If it's not what You are looking for type in the equation solver your own equation and let us solve it.
54x^2+12x=540
We move all terms to the left:
54x^2+12x-(540)=0
a = 54; b = 12; c = -540;
Δ = b2-4ac
Δ = 122-4·54·(-540)
Δ = 116784
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{116784}=\sqrt{144*811}=\sqrt{144}*\sqrt{811}=12\sqrt{811}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-12\sqrt{811}}{2*54}=\frac{-12-12\sqrt{811}}{108} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+12\sqrt{811}}{2*54}=\frac{-12+12\sqrt{811}}{108} $
| 7-2/9x=5 | | 12x-15=9x+84 | | 1/3x+5/7=13 | | 32x-3=180 | | 3x+2+10=-36 | | 3x-8=2x-4(x+7) | | 73=-5(k-7)+6(k+5) | | 4x/5-x=×/15-8/3 | | A=135m+225+208 | | (2x+3)+(7x+3)+(4x-8)=1 | | X^2+12=17x | | 3(4+f)=123 | | 6x+22=4(x+3) | | 3(4y+9=39 | | (9x+3)=(12x-24) | | (3x+9)+(5x+11)=180 | | 3(6x-9)+4x=-71 | | (2x+12)+(7x+42)=180 | | (9x-33)=(5x+27) | | 3a+19=16 | | (x+3)+65=180 | | 2x-6=2(5+x) | | (4x+65)=(10x-43) | | 2/3(9y–15)=14 | | 3(x-3)-16=2(x-8)=10 | | 2x-5(x-5)=-6+4x-11 | | 14=2/3(9y–15) | | (3x+37)=(18x-8) | | x2+13=5 | | 3d*36=96 | | 5.3(8.5r-1.7)=7.7 | | (13x+7)=(11x+29) |